
"Any fool can write code that machines understand, only good programmers write code that humans understand"

Preliminary notes

NOTE1: Each section title is to be understood with "You Should/Must" in front of it•
NOTE2: Always consider you write your code within a team of interns that do not have your skill level.
They need to (i) understand (ii) modify your code

•

Start Cleaning Up

Avoid Unnecessary Comparisons
if (xxx == true) => if (xxx)o
TIP/NOT DECIDED: having 1 single return at end of method vs. return ASAP?o

1.

Avoid (Double) Negations
if (! isInOrganic()) => if (isOrganic())o
Always keep positive thinking when writing conditionso

2.

Return Boolean Expressions Directly
if (a) { return true; } else { return false; } => return(a)o

3.

Simplify Boolean Expressions
Group into simple isXXX() methodso
Use brackets to avoid having to remember boolean operators' precedenceo
Remember:

!A && !B == !(A || B) // true♠
!A || !B == !(A && B) // true♠

o

4.

Avoid NullPointerException in Conditionals
if (m == null || m.isEmpty() || m.xxx) { ... }o
Always check !=null firsto
TIP: Always write the 'if's to check method arguments in the order the argument appear in the
prototype (=> not forget one)

o

5.

Avoid Switch Fallthrough
Be careful using "switch" statemento
Always break after each caseo
If redundant code necessary => call methodso
If fallthrough really needed => add a comment!o
Always write a "default" caseo

6.

Always Use Braces
if (xxx) yyy => if (xxx) *{* yyy *}*o
Prevents errors during future code additionso
(Bad) code indentation might make such errors very difficult to spoto

7.

Ensure Code Symmetry
Group pieces of code that have the same semantics togethero
Clearly separate pieces of code that DO NOT have the same semanticso

8.

Level Up Your Code Style

Replace Magic Numbers with Constants
constants are in ALL_CAPSo

9.

Favor Enums Over Integer Constants
o

10.

Prevents using unknown valueso

Compilation errors are cheaper to correct than runtime errors! Fail-Fast!o
Favor For-Each Over For Loops

Local counter is often useless and prone to mis-use and IndexOutOfBoundsExceptionso
Works for Sets and Maps!o

11.

Avoid Collection Modification During Iteration
Solution: get the Collection's iterator, and work on ito

12.

Avoid Compute-Intense Operations During Iteration
Make sure that the computation-intensive operations take place as rarely as possibleo
E.g., working with regexes: Pattern.matches(), String.replaceAll() =>
Pattern.compile() + Matcher

o

13.

Group with New Lines
Visually group related code and concepts together / separate different groups from each othero
Newspaper Metaphor: A good article starts with the title (class name), goes over section
headings (public members, constructors, and methods), down to its very details (private
methods)

o

14.

Favor Format Over Concatenation
Separate the layout of a String (how it is printed) from the data (what is being printed)o
Use System.out.printf() / String.format() / StringTemplate instead of
str1+str2+...

o

Add a comment with an example if the format String is not that clearo
COMMENT: beware this is not what IDEA/Eclipse do when generating toString()!!!!o

15.

Favor Java API Over DIY
Re-use Code! It's more optimized and more tested! Do not (badly) re-invent the wheel!o
Notably static methods in Classes with final "s'. E.g., Objects.require*, Collections.*,
Arrays.*, Math.*, TimeUnit...

o

"Knowing your API is what makes a true professional"o

16.

Use Comments Wisely

Someone might change the code but ignore the comment => it's better have the code do enough so
that comments are not necessary

•

Remove Superfluous Comments
DO NOT repeat/rephrase what the code already sayso
Important comments are those that provide additional information

the "why?" of a situation♠
design choices: where another design would have been possible => why yours♠

o

"TODO" comments should be replaced with issues in your bug tracking systemo

17.

Remove Commented-Out Code
Deleted comments will not get lost if you use a proper "version control system"o

18.

Replace Comments with Constants
Comments are there to explain the code. But it’s even better if the code speaks for itself!o
Replace Magic Value~Comment by Consts or Enums with meaningful names!o

19.

Replace Comments with Utility Methods
Replace "Type meaningfulName = ; return meaningfulName;" by "return computation();" +
method

o
20.

Document Implementation Decisions
Comment Template In the context of [USE CASE], facing [CONCERN] we decided for [OPTION] to
achieve [QUALITY], accepting [DOWNSIDE].

o
21.

Document Using Examples
Provide the general format/template + valid examples + invalid exampleso

o

22.

TIP remember to add those examples as JUnit tests so that there's more chances the comments
correspond to the code!

o

TIP Comments within a regular expression => See Pattern.COMMENTSo
Structure JavaDoc of Packages

Use as many meaningful @ annotations as possible (@link, NOT @author / @version /
@since as it is in CVS)

o

Use HTML formattingo
Provide ready-to-se examples for the main class usageo
DO NOT repeat information that JavaDoc already generates (like list of classes)o

23.

Structure JavaDoc of Classes and Interfaces
Always JavaDoc public classes!o
Write sufficiently abstract comments so that it does not loose sync with method signatureso
DO NOT forget invariantso
Add Exampleso
Use HTML formattingo

24.

Structure JavaDoc of Methods
They are the most important comments (e.g. used in IDEs' ToolTips)o
Methods imply state changes and side effects. This is what must be documentedo
The JavaDoc comment must be read like a contract w.r.t these changes/effectso
Use @see to link to methods with related/converse changes/effectso
State clearly your invariantso
Document extreme cases (null, Exceptions)

TIP write these cases as JUnit tests♠
o

Add Exampleso
Use HTML formatting + JavaDocs (@param, @return, @throws, @see)o
Escape "<", ">" and "&"o

25.

Structure JavaDoc of Constructors
AS you can't select the constructor's name, comment is even more important!o
Explain the state of the object when the constructor finisheso
Explain the links between the various constructors (e.g. through @See)o

26.

Name Things Right

Use Java Naming Conventions
https://www.oracle.com/technetwork/java/codeconventions-150003.pdfo
com.some.package, SOME_CONSTANT, SomeClass, someMethod/someVariableo
Use nouns for vars and verbs for methodso

27.

Follow Getter/Setter Conventions for Frameworks
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/o
JavaBeans must have

a constructor without any parameters♠
correctly named public getter and setter for every private field♠

o

For boolean fields, the getter becomes isXXX()o
As many frameworks (Hibernate, Spring, Play!, Jackson...) expect Beans, not respecting the
conventions will result in compile or (very difficult to detect) runtime errors

o

28.

Avoid Single-Letter Names
Single letters convey little meaning, imply multiple reuseo
Programming != Mathso
Contextualize your code: a search for an apple is not the same as the search for a caro
some letters/numbers (like: l & 1 and o & 0) are very difficult to distinguisho
Most IDEs will auto-complete for youo
Names are read much more often than they’re writteno

o

29.

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

The more we use a variable/method, the more we know what it does and are able to name it
correctly => Use the refactoring abilities of your IDE!

o

Avoid Abbreviations
Use lowercased Class name only where there's no more relevant nameo
Only use very common abbreviations, like CSVo

30.

Avoid Meaningless Terms
Long meaningless names can be just as burdensome as single letterso
Remove Java-Keywords like: Interface, Abstract, Impl...o
Remove role names like: Manager, Controller...o
Remove generic terms like: data, info, flag (vars/methods); misc, util (packages)...o

31.

Use Domain Terminology
Do not try to make your code too generic by using too generic nameso
Aligning names to the domain you’re writing the code for is the best way to find balance
between too short/long names

o

32.

Prepare for Things Going Wrong

Not managing Exceptions correctly makes your application appear running correctly, when it is not the
case

•

This results in data corruption, and the longer you take to realize the problem the more data is corrupted•

Fail Fast
Separate parameter validations (placed first) from the normal path (placed after)o

33.

Always Catch Most Specific Exception
You should always catch the most specific exception typeo
If you catch a more general type, you risk swallowing errors that you shouldn’t (e.g.
NullPointerException that MUST have been fixed - thus should have crashed the programm)

o

NEVER catch Throwable, or you'll break the JVM!!!o
TIP to reduce code size, Java7 introduced multiple catch blocks:
catch(NumberFormatException | IOException e)

o

34.

Explain Cause in Message
The Type of the Exception only give "what" is wrong, to solve the problem the dev needs more
context/details> put that info in the message

o

Give enough info so that the bug can be reproduced (thus, fixed): what was expected, what we
got, context

o

BEWARE that in Web Applications leaking too much information to the user is a security breach
=> write detailed error messages in logs, but not in GUI

o

TIP reuse such error cases in JUnit tests => ensures non-regression in future codeo
Use String format rather than concatenationo

35.

Avoid Breaking the Cause Chain
You will get only the highest level error, loosing all the detailed message and exact error lineo
When you rethrow an exception, always use the constructor: Exception(String message,
Throwable cause)

o

Never skip an Exception level by forwarding the lower level cause to the higher level: +throw new
XXXException(e.getCause());+

o

36.

Expose Cause in Variable
Remember Exception are normal Classes, you can add Fields to themo
Providing the new error message as an Field instead of embedding it in the new error message,
allows to extract it easily

o

Ensure your specific Exception class and its Fields are final, so that nobody changes the messageo

37.

Always Check Type Before Cast
if (xxx instanceof XXX) { XXX xxx2 = (XXX) xxx; }o

o

38.

Otherwise you'll get a ClassCastException at Runtime!
o

ClassNotFoundException can also occur but shouldn't be caught as it reflects a Production
Setup problem, not a code Problem and must make the code crash in a Development Setup

o

Always Close Resources
Leaking resources results in DoS (the whole machine goes down!)o
Java7 introduced the try-with-resources: try (<resource>) {} catch(...) {...}o
Before Java7, use: finally { if (res!=null) { resource.close(); }o

39.

Always Close Multiple Resources
finally { dirStrm.close(); wrtr.close(); } will NOT close wrtr if
dirStrm.close() fails!!!

o

Use try-with-resources!o

40.

Explain Empty Catch
An empty catch without any hint of why it’s empty always looks like a bug => add a comment
(CAUSE->EFFECT)

o

TIP You can also rename the Exception var to "ignored" to make your point more explicito

41.

Assert Things Going Right

TDD: write test cases BEFORE the actual code•

Structure Tests Into Given-When-Then
"given" = sets the stage for the actual test & captures all prerequisiteso
"when" = the operation that we actually want to testo
"then" = asserts the result(s) that we expect from the "when"o
Don't hesitate to explicit this structure with commentso

42.

Use Meaningful Assertions
To get more detailed error messages, use assertEquals(...), not assertTrue(...)o

43.

Expected Before Actual Value
BEWARE of the order of the arguments: Assert(<expected>, <computed>)o
Remember to exploit the various asserts: assertArrayEquals(), assertLinesMatch(),
assertIterableEquals(), assertAll(), assertTimeout()

o

44.

Use Reasonable Tolerance Values
Rounding errors can accur with doubles, expect tests to fail when doing lots of double
computations

o

Preferably use assertEquals(double expected, double actual, double delta)

with delta=0.1*10^
o

TIP NEVER USE FLOATING-POINT ARITHMETIC FOR MONEY, EVER!o

45.

Let JUnit Handle Exceptions
Use =Assertions.assertThrows()= not try {} catch() {} in your testso

46.

Describe Your Tests
Name your test methods correctly as this name will be the 1rst info to appear in case of failureo
Use @DisplayName("what it checks") and @Disabled("[why it’s disabled]
TODO: [what’s the plan to enable again]")

o

47.

Favor Standalone Tests
TIP Use static methods to setup/init your tests rather than using @BeforeEach / @BeforeAllo
@BeforeEach / @BeforeAll might be hidden in the Class hierarchy and are not explicitely
called, thus difficut to find when you try to debug a single test

o

Each test must be understandable independently => self containedo
Eases refactoringo

48.

Parametrize Your Tests
Do not repeat asserts/write multiple tests in the same test method

Makes actual error more difficult to spot♠
♠

o
49.

Forces solving of errors sequentially
♠

Create a test method with arguments together with @ParameterizedTest() and
@ValueSource()

o

Cover the Edge Cases
Edge cases are very application-dependant, but at least check type boundary values:

null, [],♠
"", ""♠
0, +/-1, Integer.MIN/MAX_VALUE, Double.MIN/MAX_VALUE♠

o

Do not try to cover everything, but most common correct (90% tool usage)/incorrect cases (edge
cases)

o

Add more tests when you encounter bugs to ensure non-regressiono

50.

Design Your Objects

Split Method with Boolean Parameters
If a method uses a boolean as input to switch its behaviour, replace by 2 methods with names
that identify correctly each behaviour

o

Favor smaller, more reusable pieces of code, less prone to errorso

51.

Split Method with Optional Parameters
Do not use null to make a parameter optional, this means your method shows several
behaviours, that the prototype does not identifies

o

Split in 2 simpler methods, 1 with the parameter, 1 without the parametero
Not considering null an edge case is dangerouso

52.

Favor Abstract Over Concrete Types
On Object declaration or method arguments or method returns, use abstract types: List<XXX>
vs. ArrayList<XXX>

Collection: most general♠
List: order is important (Vector, ArrayList, LinkedList)♠
Set: no repetition (HashSet, TreeSet)♠
Map: links 2 entities (HashMap, TreeMap)♠

o

You will avoid many conversions from one concrete type to anothero
This will ease refactoring when switching to another concrete typeo

53.

Favor Immutable Over Mutable State
Misuse of objects is detected at compilation timeo
Use final when Object are not supposed to changeo
Since everything is a reference in Java, using XXX x = y creates 2 references to the same object.
Modifying one will impact the other. If this was not the intent (forgot the create a copy of the
instance) this will be detected at Runtime only

o

This is particularly true for "value objects" (indistinguishable if their values are equal):
percentages, money, currency, times, dates, coordinates, distances...

o

TIP also set the Class as final, otherwise sub-classes might re-introduce mutabilityo

54.

Combine State and Behavior
Classes containing only behavior (=Methods) but lacking state (=Fields) indicate OO-design
problems (encapsulation is lost)

o

Watch out for methods that only work with their input parameters, but NOT with the Fields of
their class

o

55.

Avoid Leaking References * BEWARE in your setters, if you simply copy the reference passed as argument,
an external modification of the Object thazt waht passed as argumetn will also change the content of
your own Object!

TIP In your setters, copy the content of the Objects/Collections passed as argument: this.xxx
= new ArrayList<>(xxxArg);

Also protects against null by raising Exception if one is passed as argument!♠

o

o

56.

BEWARE in your getters, when you return an Object/Collection, even it is final (reference is not
modifiable), the content can still be modified!

o

TIP In your getters, return an immutable Object/Collection: return
Collections.unmodifiableList(someFieldList);

o

Not having setters at all (only constructors) makes your job much easier (not possible with some
frameworks: persistence...)

o

Avoid Returning Null
null is an edge case meaning the Object is not initialized, DO NOT use it with another meaningo
Particularly, never return null by default in a method when you do not know what else to returno
Solutions:

Throw an Exception if not having an empty/default case is a problem♠
Create a static final instance of your Class that represents the empty/default case,
against which you'll be able to check equals()

♠

Use Java8's Optional♠

o

57.

Let Your Data Flow

Favor Lambdas Over Anonymous Classes
Lambdas are shorter thus more readableo

58.

Favor Functional Over Imperative Style
When working with collections, favor shorter functional programming styleo
Functions (with good names) allows to explicit WHAT you do over HOW you do it (Imperative
paradigm)

o

Use collection.stream(). As a bonus they can be run in parallel (MAP/REDUCE paradigm)o
Intermediary Operations: map(), flatMap(), filter(), distinct(), limit(), skip(),
sorted(), [mapToX(), forEach()]...

o

Terminal Operations: any/all/noneMatch(), findAny/First(), reduce(), ifPresent()
, [collect(), count(), average()]...

o

Collectors.toList(), Collectors.groupingBy(),
Collectors.toCollection(TreeSet::new) ...

o

59.

Favor Method References Over Lambdas
Problem with Lambdas: they cannot be reused (e.g. to test hem independently)o
=> when possible write a method in your OBject and pass a Method reference (::) as argument to
the stream() methods

o

TIP you can refer to a Constructor with ClassName::newo

60.

Avoid Side Effects
Side effects (modifying outsides Objects in a Lambda) are not Thread Safe (and not Functional in
spirit)

o
61.

Use Collect for Terminating Complex Streams
DO NOT terminate streams with forEach this generally mean you use a side effecto
Using collect() / Collector.groupingBy() will make your code look a lot more like SQL,
thus more readable

o

62.

Avoid Exceptions in Streams
Lambdas & Exceptions do not mix well, particularly when you need to close the resource that
you are streaming/iterating onto

o

TIP catch the Exception inside the Lambda and return a Stream.empty() (might require the
use of flatMap() to output a Stream)

o

63.

Favor Optional Over Null
Returning null does not force the caller to manage these edge cases, which will lead to bad
crashes

o

Use return an Optional and use .ifPresent() to react correctlyo

64.

Avoid Optional Fields or Parameters
o

65.

DO NOT define a Field or Parameter as Optional<>, otherwise it can still be set to null (as
Optional is an Object)!

o

Optional are only necessary in method returnso
As you do not want the setter to be able to insert a null in your field/argument, use
Objects.requireNonNull() to validate user input

o

If you need to set your Field to null, do it with a method so that the user can only do so in a
controlled manner

o

This breaks the Java Bean convention that Getter/Setter must use the same types, and therefore
might not work with some frameworks

o

Use Optionals as Streams
An Optional IS a stream, with either zero or exactly one element.o
You can use Stream operations like filter to act on them without managing explicitely the empty
case: .orElse(), orElseThrow()

o

66.

Prepare for the Real World

Use Static Code Analysis Tools
Automate basic debug tasks => Helps focusing on Higher level bugso
Examples:

FindBugs/SpotBugs (text-only, no fix, false positives)♠
CheckStyle/PMD (text-only, very verbose)♠
ErrorProne (few false positive, proposes fixes)♠
SonarQube (non-free)♠

o

67.

Agree On the Java Format in Your Team
Work along agile principles (XP/SCRUM)o
Whatever it is, define a policy (braces positions, spaces vs. tab, max line length...)o
If you do not want to waste time creating one, use an industry standard, like
https://google.github.io/styleguide/javaguide.html

o

Configure your tools to use it (IDE, Versioning tool...) https://github.com/google/google-java-
format

o

68.

Automate Your Build
First learn coding Java in Text Editor + compile&run manuallyo
Then in production use an IDE + manage deps&compile&test&document&deploy&run with
tools

o

Example tools: Gradle, Maven, Anto

69.

Use Continuous Integration
Outsource tests, integration, static quality checks to dedicated machines: continuous integration
servers

o

CI Tools can do that on every push to the versioning sytemo
Example tools: Jenkins, Travis CI (cloud), Codacity (cloud)o

70.

Prepare for and Deliver Into Production:
You MUST be able to respond to the question: /How long does it take you to put a change of a
single line of code into production?/

o

Most CI tools will also provide means to automatically deployo
Prepare by collecting&monitoring debugging information: logs, metrics, dashboards, and alertso
Example tools: ELk-Stack, Graylogo
Monitor Exceptionso
Example tools: Airbrake (back end), Sentry (front end)o

71.

Favor Logging Over Console Output
Writing to the console, even if buffered is extremely slow!o
Logs have timestampso
Logs statements provide their line number in the codeo

o

72.

https://google.github.io/styleguide/javaguide.html
https://github.com/google/google-java-format

Logs provide fine grained importance: FATAL / ERROR / WARNING / ... / INFO / DEBUG / ...
o

Logs size is only limited by disk spaceo
Logs persist if machine is rebootedo
Spped up things using format Stringso
Example tools: Log4jo

Minimize and Isolate Multithreaded Code
First write Omni-Threaded code. Optimize it. Move to Multi-Threaded code if measures shows it
is required

o

Really think a lot about the structure of MT code & document it thoroughlyo
Favor Immutable objectso
Minimize and Isolate MT code in a small number of small packageso
Use the JCIP Annotations http://jcip.net/annotations/doc/o

73.

Use High-Level Concurrency Abstractions
Read Books/Docs and be sure to understand Java Memory Model & the happens-before
relations between state changes

o

Use higher-level classes:
Semaphore, CountDownLatch, CyclingBarrier♠
AtomicInteger, LongAdder, ConcurrentHashMap, CopyOnWriteArrayList, BlockingQueue♠

o

Try to avoid primitive tools
volatile and synchronized♠
Thread#start() and the Thread#join()♠
Object#wait() and Object#notify()♠

o

74.

Speed Up Your Program
Be sure to write Streams/Lambdas without side effects and where single processing steps are
independent

o

Then you can simply transform
.stream().[sequential().]filter(...) ->
.stream().parallel().filter(...)

♠
o

This DOES NOT work with sort() or forEachOrdered()o

75.

Know Your Falsehoods
Examples of things that have tens of ways to be written/interpreted (particularly in different
countries) => assume as less as possible

first/middle/last-names♠
emails♠
addresses/postal codes♠
CSV files♠
TimeZones♠

o
76.

External Resources

Books
Effective Java / Clean Codeo
Design Patterns: Elements of Reusable Object-Oriented Softwareo
Pragmatic Unit Testing in Java 8 with JUnito
Continuous Integration / Release It!o
Java Concurrency in Practice / Programming Concurrency on the JVMo
Functional Programming in Javao
Agile Software Development, Principles, Patterns, and Practiceso

•

URLs
https://www.dzone.com
https://dzone.com/refcardz

o

https://zeroturnaround.como

•

http://jcip.net/annotations/doc/
https://www.dzone.com
https://dzone.com/refcardz
https://zeroturnaround.com

https://zeroturnaround.com/tag/cheat-sheet/
https://www.tutorialspoint.como
https://baeldung.como

Largely Inspired From: Java by Comparison, Simon Harrer, Jörg Lenhard, Linus Dietz.

https://zeroturnaround.com
https://zeroturnaround.com/tag/cheat-sheet/
https://www.tutorialspoint.com
https://baeldung.com

